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Crystalline membranes at finite temperatures have an anomalous behavior of the bending rigidity that makes
them more rigid in the long-wavelength limit. This issue is particularly relevant for applications of graphene in
nanoelectromechanical and microelectromechanical systems. We calculate numerically the height-height cor-
relation function G�q� of crystalline two-dimensional membranes, determining the renormalized bending ri-
gidity, in the range of wave vectors q from 10−7 Å−1 till 10 Å−1 in the self-consistent screening approximation
�SCSA�. For parameters appropriate to graphene, the calculated correlation function agrees reasonably with the
results of atomistic Monte Carlo simulations for this material within the range of q from 10−2 Å−1 till 1 Å−1.
In the limit q→0 our data for the exponent � of the renormalized bending rigidity �R�q��q−� is compatible
with the previously known analytical results for the SCSA ��0.82. However, this limit appears to be reached
only for q�10−5 Å−1 whereas at intermediate q the behavior of G�q� cannot be described by a single
exponent.
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I. INTRODUCTION

A very active field in statistical mechanics and condensed-
matter physics is the study of interfaces and membranes.
Physical membranes are two-dimensional �2D� surfaces em-
bedded in three-dimensional �3D� space. In these systems,
the interplay between the two-dimensional geometry and
thermal fluctuations is at the origin of a number of unex-
pected behaviors, going from flat to glassy and tubular
phases.1 The stability of a flat 2D phase seems to be in con-
tradiction with the Mermin-Wagner theorem,2 which states
the impossibility of long-range order in two dimensions due
to thermal fluctuations. This apparent contradiction became
subject of great interest after the discovery of graphene, a
single-atom-thick layer of carbon atoms,3–7 which can be
considered as the prototype of crystalline membranes. The
stability of this material against crumpling, demonstrated
even for free-standing samples,8,9 was proven to be related to
the presence of intrinsic ripples.10 Ripples and the mechani-
cal properties of graphene have been subject of much recent
theoretical work.11–17

The first attempt to study the anomalous elasticity in po-
lymerized membranes was done by Nelson and Peliti18 using
a simple one-loop self-consistent theory, without including
any renormalization of the in-plane Lamé constants. They
found an anomalous bending energy of the flat phase that for
small wave vectors q deviates from its constant value and
acquires a power-law behavior for the effective bending ri-
gidity �R�q��q−� with �=1. The existence of anomalous
elasticity was confirmed by an �=4−D expansion, where D
is the membrane dimension.19 A step beyond was done by Le
Doussal and Radzihovsky20 who generalized to polymerized
membranes the self–consistent screening approximation
�SCSA� introduced by Bray21 to estimate the critical expo-
nents of the O�n� model in the large-n limit. This approxi-
mation is exact when the codimension dc=d−D is going to
infinity �d being the dimension of the embedding space�. In
Ref. 20 an approximate solution of the SCSA in the long-
wavelength limit was found, giving an exponent ��0.821
for a 2D membrane in a 3D space.

Motivated by the relevance for graphene, several works
have recently appeared studying the bending rigidity proper-
ties of 2D crystalline membranes. Mariani and von Oppen22

studied the one-loop correction to the bending rigidity due to
the effective interaction between flexural phonons. More so-
phisticated methods as nonperturbative renormalization
group �NPRG� have been used by Kownack and
Mouhanna,23 who found an exponent of ��0.85, in good
agreement with the SCSA results,20 and by Braghin and Has-
selmann, who extended the analysis of Ref. 23 to finite mo-
menta. Furthermore, the validity of SCSA has been recently
checked by Gazit,24 who has applied the approximation to
second order expansion in 1 /dc and found no significant de-
viation from the first-order expansion. As a result, vertex
corrections can be neglected during the calculation and
SCSA seems to be applicable to crystalline membranes.

In this paper, we solve numerically the SCSA equations
for the height-height correlation function G�q� and calculate
it in a wide range of wave vectors q. In the long-wavelengths
limit q→0, our results for the exponent � agree with the
analytical solution of Le Doussal and Radzihovsky20 but at
larger q the full solution has a more complex form that can-
not be described by a single exponent. Furthermore, we iden-
tify the length scale separating the harmonic behavior in the
short-wavelength limit, from the region where anharmonic
coupling start to play an important role and the correlation
function G�q� is renormalized. We also compare the results
of the numerical solution to Monte Carlo simulations of
graphene based on the LCBOPII bond order potential.25 The
two approximations reasonably agree, justifying the use of
SCSA in the calculation of physical properties of graphene.

II. METHOD

In this section we briefly review the SCSA for
membranes.20,24 In the Monge representation, displacements
of a D-dimensional membrane embedded in a d-dimensional
space, are parametrized using a D-component phonon field
u, and the out-of-plane height fluctuations by a dc=d−D
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dimensional field h. Therefore, if r0 describes the position of
a particle on the undistorted �flat� membrane, its configura-
tion after the displacement due to perturbations will be given
by the d-dimensional vector r= �r0+u ,h�. Assuming an as-
ymptotically flat geometry with small out-of-plane fluctua-
tions, such that u and h are functions of r0, the free energy
takes the form1

F�u,h� =
1

2
� dDr����2h�2 + 2�u��

2 + 	u��
2 � , �1�

where the strain tensor u��, to the lowest order in gradients
of u and h, reads

u�� �
1

2
���u� + ��u� + ��h · ��h� �2�

with � ,�=1, . . . ,D. In Eq. �1�, �, 	 and � are the bending
rigidity, the first Lamé constant, and the shear modulus,
respectively.26 In the harmonic approximation, the last term
of Eq. �2� is neglected, leading to a decoupling of the bend-
ing �h� and stretching �u� modes. Equation �1� provides a
correct description of elastic free energy and height fluctua-
tions of a membrane as long as the equilibrium phase is truly
a flat phase. Once the phonons have been integrated out, the
effective free energy can be expressed in terms of the Fourier
components of the height fields

Fef f�h� =
1

2
� dDq

�2
�D	�q4
hq
2 +
1

4dc
� dDk

�2
�D� dDk�

�2
�D

� R�D��k,k�,q��hk · hq−k��hk� · h−q−k��� , �3�

where the effective four-point-coupling fourth-order tensor
R�D��k ,k� ,q� reads

R�D��k,k�,q� = 2��kPT�q�k��2 +
2�	

2� + 	
�kPT�q�k�

��k�PT�q�k�� �4�

and P��
T �q�= ����−q�q� /q2� is the transverse projection op-

erator. Notice that the interaction is completely separable for
physical membranes �D=2 and d=3�, allowing us to write:24

R�2��k ,k� ,q�=2b0�q̂�k�2�q̂�k��2, where q̂=q /q and b0
=2���+	� / �2�+	�.

Our aim is to calculate the correlation function

�h��− q�h��q�
 = ���G�q� �5�

with G−1�q�=�q4+
�q�, where 
�q� is the self–energy and
G0

−1�q�=�q4 is the correlation function in the harmonic ap-
proximation. In the SCSA theory, the renormalized elasticity
is determined through a 1 /dc expansion for the two-point and
four-point correlation functions of h, that turns them into a
closed self-consistent set of coupled integral equations for
the self-energy 
�q�. For physical membranes, the set of
equations can be written as20

G−1�q� = G0
−1�q� + 
�q� , �6�


�q� = 2� d2p

�2
�2b�p��qPT�p�q�2G�q − p� , �7�

b�p� =
b0

1 + 3b0I�p�
, �8�

I�p� =
1

8
� d2q

�2
�2q2
p − q
2G�q�G�p − q� . �9�

In Eq. �8� the constants �, 	, and � appearing in b0 are
divided by kBT, where T is the temperature and kB the Bolt-
zman constant. Equations �6�–�9� admit an analytic solution
in the long-wavelength limit, under the assumptions G−1�q�
�
�q��Z /q4−�, with Z a nonuniversal amplitude, and
b�k��1 /3I�k�. The solution of such simplified system gives
for the critical exponent �=0.821.20 However, a full knowl-
edge of the correlation function is lacking in this approach.

III. RESULTS AND DISCUSSION

In the following, we solve numerically the set of equa-
tions Eqs. �6�–�9�. The self-consistent cycle starts with the
harmonic approximation G�q�=G0�q�. From this, we com-
pute Eqs. �7�–�9� and the obtained self-energy 
�q� is used
to dress the new correlation function G�q�, which in turn
allows us to start a new iteration. Taking into account that
G�q�, 
�q�, b�q�, and I�q� depend only on the modules of
the vector variables, it is natural to integrate Eqs. �6�–�9� in
polar coordinates with the replacements p→ �p ,�� and q
→ �q ,��. Moreover, further in this paper we will make no
difference between G�q� and G�q�. Thus, Eqs. �6�–�9� can be
written as follows:

G−1�q,�� = G0
−1�q,�� + 
�q,�� , �10�


�q,�� =
1

2
2�
0

2


d��
0

qmax

dpb�p,��pq4 sin4�� − ��

� G��q2 + p2 − 2qp cos�� − ��,� − �� , �11�

b�p,�� =
b0

1 + 3b0I�p,��
, �12�

I�p,�� =
1

32
2�
0

2


d��
0

qmax

dqq3�q2 + p2 − 2pq cos�� − ���

� G�q,��G��q2 + p2 − 2pq cos�� − ��,� − �� .

�13�

In the numerical implementation we have used a �hard� ul-
traviolet �UV� cutoff qmax in the radial integrals. Due to finite
size effects, it is natural to consider an UV cutoff �which is
of the order of the inverse lattice constant in crystalline
membranes� and we have checked that the results are inde-
pendent on this cutoff. We have checked that, in the relevant
range, the same results are obtained by multiplying G�q� by
a cut-off function A�q��e−��q / ��4

, where ��qmax /5 and we
have used qmax=100 Å−1.

The next difficulty is the divergence of the correlation
function G�q� in the infrared �IR� limit when q→0. As an
example, Fig. 1 shows the integrand of Eq. �9�, where the
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two divergences, for q=0 and q= p, can be seen. To avoid
such IR divergence, we replace the function G0�q�=� /q4 by
G0�q�=� / �q+��4, where � is a small parameter ��
=10−46 Å−1 in our numerical calculations�.

Because of the power-law behavior of the correlation
function, it is extremely convenient to use a logarithmic grid
for numerical evaluations. Therefore we discretize the mo-
mentum axis into points qi=aed�i−1�, where i is the index of
the point in the grid of q, a is the minimum value considered
for the representation �a=10−7 Å−1 in our calculations� and
�=log�qmax /a� / �N−1�, where qmax is the UV cutoff and N is
the number of points in the grid of q.27 In Fig. 2 we show the
renormalized correlation function G�q� after each of the first
51 iterations. In general, convergence is very fast and
achieved after about 20 iterations.

Our results are summarized in Fig. 3. There we compare
the bare �unrenormalized� correlation function G0�q�
=1 /�q4 �dotted blue line� to the solution of the SCSA, G�q�

�red line�. The important result is the value of the wave vec-
tor, qc�0.1 Å−1, where G�q� changes behavior from har-
monic, where G�q��1 /q4 �for q�qc�, to nonharmonic, with
G�q��1 /q4−�, for q�qc. The Ginzburg criterion1 gives an
approximate value of the wave vector q�, and thus the spatial
scale, L�=2
 /q�, at which anharmonic effects become domi-
nant

q� =� 3TK

8
�2 , �14�

where K is the 2D bulk modulus. For graphene, K
=12.4 eV Å−1 and �=1.1 eV at room temperature �T
=300 K�,13 leading to q��0.18 Å−1. This wave vector is
represented by the vertical dotted-dashed line in Fig. 3 and it
is in good agreement with the SCSA results.

Furthermore, we have numerically solved the SCSA set of
equations Eqs. �6�–�9� in the long-wavelength approximation
used by Le Doussal and Radzihovsky.20 By taking G−1�q�
�
�q� and b�p��1 /3I�p�, we obtain the approximate solu-
tion shown by the green line in Fig. 3, which is only valid in
the long-wavelength limit. Notice that both, the exact and the
approximate solutions coincide for small wave vectors �i.e.,
in the limit q→0�.

Finally, we have fitted this approximate solution to G�q�
�Z /q4−�, with �=0.821 and Z=1.2, as shown by the dashed
black line �q is expressed in Å−1�. The three results �exact
numerical solution of the SCSA, approximate numerical so-
lution, and analytic approximation� coincides in the long-
wavelength limit, and corroborate the value given in Ref. 20
for the critical exponent, �=0.821. We mention here that the
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FIG. 1. �Color online� Integrand of Eq. �9� for p=2.5 Å−1 and
�=0. The UV cutoff in this figure has been taken, for illustrative
reasons, to qmax=5 Å−1.

FIG. 2. �Color online� Evolution of the calculated Gi�q� for each
iteration i=1, . . . ,51 �red lines�. G0�q�=� /q4 is denoted by the dot-
ted blue line. Inset: G0�q0�−Gi�q0� as a function of the iteration i
for q0=10−7 Å−1, which shows how the solution converges after a
few iterations.

FIG. 3. �Color online� Comparison of the unrenormalized cor-
relation function in the harmonic approximation G0�q� �dotted blue
line� to the solution of the SCSA equations G�q� �red line� and the
long-wavelength limit solution Gapp�q�, using the approximations
of Ref. 20 �gray line�. The black dashed line is a fitting to the
approximate solution G�q��Z /q4−� choosing the parameters �
=0.821 and Z=1.2. The vertical dot-dashed line indicates the wave
vector q��0.18 Å−1 obtained from the Ginzburg criterion Eq. �14�.
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above solution is robust as far as we start the first iteration
from the harmonic approximation �G0�q��q−4� or from any
correlation function that diverges faster than q−4+�0 with �0
�0.85.

We also compare the solution of the SCSA system of
equations with the correlation function G�q� of graphene ex-
tracted from the Monte Carlo simulations presented in Ref.
14. For more details about the Monte Carlo calculation of the
correlation function G�q�, see Ref. 28. In Ref. 14 the results
for the correlation function found for two different model
potentials were described by a power law with exponent �
=0.85. The Monte Carlo results are shown in Fig. 4 together
with the solution of the SCSA system of equations and the
unrenormalized correlation function G0�q�=1 /�q4. In Fig. 4
we can see that G�q� obtained from the SCSA equations
agrees rather well with the Monte Carlo data in the range of
q accessible in atomistic calculations. An even better agree-
ment with Mote Carlo data was found in Ref. 16, where the
height-height correlation function was computed using a
more accurate approximation as the NPRG. However, notice
that we do not use here any additional adjustable parameter

when comparing to Monte Carlo data. Therefore, this justi-
fies the use of SCSA in the intermediate range of momenta.

Furthermore, we compare the results to the approximate
correlation function Ga�q�, obtained from the effective
Dyson equation10

Ga
−1�q� = G0

−1�q� + 
�q� , �15�

where G0�q� is the correlation function in the harmonic ap-
proximation

G0�q� =
N

�S0q4 �16�

N being the number of atoms of the sample and S0
=LxLy /N the area per atom, and the self-energy is approxi-
mated by


�q� =
AS0

N
q4�q0

q
��

, �17�

where q0=2
�K /� and A an unknown numerical factor. The
fitting of Eq. �15� to the solution of the SCSA equations in
the region 10−4–1 Å−1 gives A=0.3261, as shown in Fig. 4
by the dashed green line. In this fitting the exponent � has
been fixed to its long-wavelength value, �=0.82. This ap-
proximation is a good interpolation function between the
long- and short-wavelength regions, and it can be used to
simplify the calculation of physical quantities that involve
the renormalized correlation function. This range of wave
vectors �10−4–1 Å−1� is relevant for discussing the scatter-
ing of electrons by ripples.29

IV. CONCLUSIONS

In summary, we have studied numerically the self-
consistent theory of polymerized membranes proposed in
Ref. 20. The critical exponent that we obtain in the long-
wavelength limit, ��0.82, coincides with the analytic ap-
proximation. In addition, we have calculated the correlation
function G�q� in the whole range of momenta and found
good agreement with results of Monte Carlo calculations. We
have also found the characteristic wave vector, qc
�0.1 Å−1, that separates the region of validity of the har-
monic approximation �for q�qc� where G�q��q−4, from the
region where fluctuations lead to a considerable renormaliza-
tion of the correlation function, and where G�q��q−4+�. This
value of qc is close to the one given by the Ginzburg crite-
rion. From this wave vector, the exponent � changes from
zero �for q�qc� to 0.82 in the long-wavelength limit. This
limit is important when dealing with MEMS applications of
graphene.9,30,31 The renormalization of the bending rigidity
�→�R�q��q−� should be taken into account, e.g., when cal-
culating the eigenfrequencies of graphene membranes that
would become ��q����R�q�q4�q2−�/2�q1.6.

Our results show the importance of considering the renor-
malization of the bending rigidity. The good agreement be-
tween SCSA and Monte Carlo simulations for graphene can
be seen as a proof that SCSA is a good approximation to
account for the effect of corrugation in the physical proper-
ties of graphene.
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FIG. 4. �Color online� �Color online�. �a� Comparison of the
unrenormalized correlation function in the harmonic approximation
G0�q� �dotted blue line� to the solution of the SCSA equations G�q�
�red line� and the Monte Carlo data �black dot-dashed line�. The
dashed green line corresponds to the approximation given by Eq.
�15�. In the inset we show the deviation of the approximation Ga�q�
from the SCSA solution G�q�. �b� Zoom of Fig. 4�a� focusing on the
comparison of G�q� from SCSA to the Monte Carlo data.
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